Engineering Pyranose 2-Oxidase for Modified Oxygen Reactivity

نویسندگان

  • Dagmar Brugger
  • Iris Krondorfer
  • Christopher Shelswell
  • Benjamin Huber-Dittes
  • Dietmar Haltrich
  • Clemens K. Peterbauer
  • Claudio M. Soares
چکیده

Pyranose 2-oxidase (POx), a member of the GMC family of flavoproteins, catalyzes the regioselective oxidation of aldopyranoses at position C2 to the corresponding 2-ketoaldoses. During the first half-reaction, FAD is reduced to FADH2 and reoxidized in the second half-reaction by reducing molecular oxygen to H2O2. Alternative electron acceptors including quinones, radicals or chelated metal ions show significant and in some cases even higher activity. While oxygen as cheap and abundantly available electron acceptor is favored for many processes, reduced oxygen reactivity is desirable for some applications such as in biosensors/biofuel cells because of reduced oxidative damages to the biocatalyst from concomitant H2O2 production as well as reduced electron "leakage" to oxygen. The reactivity of flavoproteins with oxygen is of considerable scientific interest, and the determinants of oxygen activation and reactivity are the subject of numerous studies. We applied site-saturation mutagenesis on a set of eleven amino acids around the active site based on the crystal structure of the enzyme. Using microtiter plate screening assays with peroxidase/2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) and 2,6-dichlorophenolindophenol, variants of POx with decreased oxidase activity and maintained dehydrogenase activity were identified. Variants T166R, Q448H, L545C, L547R and N593C were characterized with respect to their apparent steady-state constants with oxygen and the alternative electron acceptors DCPIP, 1,4-benzoquinone and ferricenium ion, and the effect of the mutations was rationalized based on structural properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical characterization of the pyranose 2-oxidase variant N593C shows a complete loss of the oxidase function with full preservation of substrate (dehydrogenase) activity† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6cp06009a Click here for additional data file.

This study presents the first electrochemical characterization of the pyranose oxidase (POx) variant N593C (herein called POx-C), which is considered a promising candidate for future glucose-sensing applications. The resulting cyclic voltammograms obtained in the presence of various concentrations of glucose and mediator (1,4-benzoquinone, BQ), as well as the control experiments by addition of ...

متن کامل

Glucose Oxidation Using Oxygen Resistant Pyranose-2- Oxidase for Biofuel Cell Applications

Glucose Oxidation Using Oxygen Resistant Pyranose-2Oxidase for Biofuel Cell Applications Samet Sahin*, Thanyaporn Wongnate, Pimchai Chaiyen, Eileen H. Yu* Newcastle University, School of Chemical Engineering and Advanced Materials, Merz Court, Newcastle upon Tyne, England, NE1 7RU, UK Department of Biochemistry and Center of Excellence in Protein Structure and Function Faculty of Science, Mahid...

متن کامل

Engineering of Pyranose Dehydrogenase for Increased Oxygen Reactivity

Pyranose dehydrogenase (PDH), a member of the GMC family of flavoproteins, shows a very broad sugar substrate specificity but is limited to a narrow range of electron acceptors and reacts extremely slowly with dioxygen as acceptor. The use of substituted quinones or (organo)metals as electron acceptors is undesirable for many production processes, especially of food ingredients. To improve the ...

متن کامل

Electrochemical glucose biosensing by pyranose oxidase immobilized in gold nanoparticle-polyaniline/AgCl/gelatin nanocomposite matrix

0308-8146/$ see front matter 2009 Elsevier Ltd. A doi:10.1016/j.foodchem.2009.05.087 * Corresponding author. Tel./fax: +90 232 3438624 E-mail address: [email protected] (S. Timur). A novel pyranose oxidase (PyOx) biosensor based on gold nanoparticles (AuNPs)–polyaniline(PANI)/AgCl/ gelatin nanocomposite has been developed for the glucose detection. PyOx was immobilized on the surface of glass...

متن کامل

Convenient microtiter plate-based, oxygen-independent activity assays for flavin-dependent oxidoreductases based on different redox dyes

Flavin-dependent oxidoreductases are increasingly recognized as important biocatalysts for various industrial applications. In order to identify novel activities and to improve these enzymes in engineering approaches, suitable screening methods are necessary. We developed novel microtiter-plate-based assays for flavin-dependent oxidases and dehydrogenases using redox dyes as electron acceptors ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014